Given an array of integers arr, returntrueif and only if it is a valid mountain array.
Recall that arr is a mountain array if and only if:
arr.length >= 3
There exists someiwith 0 < i < arr.length - 1 such that:
arr[0] < arr[1] < ... < arr[i - 1] < A[i]
arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
Example 1:
Input: arr = [2,1] Output: false
Example 2:
Input: arr = [3,5,5] Output: false
Example 3:
Input: arr = [0,3,2,1] Output: true
Constraints:
1 <= arr.length <= 104
0 <= arr[i] <= 104
Solution
Approach 1: One Pass
Intuition
If we walk along the mountain from left to right, we have to move strictly up, then strictly down.
Algorithm
Let's walk up from left to right until we can't: that has to be the peak. We should ensure the peak is not the first or last element. Then, we walk down. If we reach the end, the array is valid, otherwise its not.
class Solution {
public boolean validMountainArray(int[] A) {
int N = A.length;
int i = 0;
// walk up
while (i+1 < N && A[i] < A[i+1])
i++;
// peak can't be first or last
if (i == 0 || i == N-1)
return false;
// walk down
while (i+1 < N && A[i] > A[i+1])
i++;
return i == N-1;
}
}
Complexity Analysis
Time Complexity:O(N)O(N), whereNNis the length ofA.
Space Complexity:O(1)O(1).
위 솔루션의 방법은 추가 스테이터스가 필요없어서 더 좋은듯
class Solution {
public boolean validMountainArray(int[] arr) {
if(arr.length < 3) return false;
int status = -1;
for(int i = 0; i < arr.length-1; i++) {
if((status == -1 || status == 0) && arr[i] < arr[i+1]) {
status = 0;
} else if((status == 0 || status == 1) && arr[i] > arr[i+1]) {
status = 1;
} else {
return false;
}
}
return (status == 1);
}
}